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The article suggests a mathematical model of the joint heat-engineering process 
of heating and cooling incompletely solidified ingots. 

Problems of heat transfer in bodies with movable phase boundaries (in our case upon so- 
lidification of ingots or castings) belong to the most complex problems of the theory of heat 
conduction. In solving them it is necessary, together with the temperature function, to find 
a function characterizing the position of the boundaries of phase transitions. This pair of 
functions is determined by a system of nonlinear differential equations. As a rule, it is 
not possible to obtain an accurate solution of problems of heat conduction in case of phase 
transformations because these problems are nonlinear. 

In the Soviet and non-Soviet literature there are extensive descriptions of different 
numerical methods for solving a similar class of problems [1-3, etc.], and the choice of cer- 
tain calculation and difference schemata is substantiated. 

The present article examines the thermal state of a plate ingot in the joint process 
of its preparation for plastic deformation by a technological procedure as used on the scale 
of metallurgical production which includes shaping and cooling of the ingot in the ingot mold, 
cooling in air, and subsequent heating in some appropriate plant. 

Complex study of this process is of particular importance for optimizing the heating 
regime of ingots after hot charging and with an incompletely solidified core; there it is 
indispensable to know the temperature distribution in the section of the ingot at the instant 
when it is placed in the heating device. 

Let us examine a complex problem, symmetrical about the 0y axis (Fig. i), of the cooling 
and heating of a flat (plate) metallurgical ingot obtained by ingot mold Casting. Such an 
arrangement is justified in solving problems for the zone of an industrial ingot situated 
between one-third and one-half of the height measured from the top of the ingot mold where 
there is practically no vertical temperature gradient [4]. 

At all technological stages the temperature field in the ingot is described by the dif- 
ferential equation of nonsteady heat conduction 

Cz (T) Pi (T) OTi (x, "~) OT,(x. ~) ] 
- , ,  ( 1 )  

ax ax 

Fig. i. Advance of the crys- 
tallization front in the biphase 
zone of an ingot (casting): i) 
liquid metal; 2) solidifying 
skin; 3) gas gap; 4) nonmetallic 
layer on the inner surface of the 
liquid ingot mold; 5) ingot mold. 
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where i = i, 2. The subscript i denotes values relating to the ingot in the range 0 < x _< do, 
the subscript i = 2, those relating to the ingot mold in the range d o <_ x _< d. 

Proceeding from the hypothesis that a small section of the ingot mold is filled with 
liquid melt, we write the initial conditions: 

T (x; O) = { Tl,o for theingot, 
T2,o for the mold. (2 )  

Let us formulate the boundary conditions. On the axis of symmetry (x = 0) the following 
equation applies : 

--~i dT, =0 .  (3)  
Ox 

At the period of solidification of the ingot in the mold, the conditions of conjugation of 
the temperature fields in the plane of contact of the ingot and the mold, with a view to the 
appearance of a gaseous interlayer and a nonmetallic layer on the inner surface of the mold, 
are the following [3]: 

OT~ (T1-- Tnm) ( t--~g + ~rc) ~'nm OT 1 
' 6nm= _. Zl (T), ( 4 )  

--)~2(T) Ox=-- i:m+~g@o~c Ox 

When the ingot has been knocked out of the mold and is heated in the furnace, the fol- 
lowing boundary condition applies to the surface of the ingot: 

a c (T~-- To) -~ ego (T~t - T40) in air cooling, 

OI Ix=do 
~r 

% (Tfur---T1)-l-e*a o (T~ --T~) in furnace heating 
' f ie  

On the free surfaces of the ingot mold, where convective and radiative heat exchange 
with the medium surrounding the mold takes place, the boundary conditions are written in the 
form: 

- (r) l = to) + (6) 
OI b = .  

When there is a smooth interface between the liquid and the solid phases in the ingot, 
the equation of heat balance is used: 

@1 OT OT dE 
dr 

We n o t e  t h a t  mos t  i n d u s t r i a l  a l l o y s  c r y s t a l l i z e  in  t h e  t e m p e r a t u r e  i n t e r v a l  [ T l i q ,  T s o l ] .  
The e x i s t e n c e  o f  an i n t e r v a l  o f  c r y s t a l l i z a t i o n  w i t h  n o n u n i f o r m  t e m p e r a t u r e  d i s t r i b u t f o n  
l e a d s  t o  t h e  b l u r r i n g  o f  t h e  b o u n d a r y  be tween  t h e  s o l i d  and l i q u i d  p h a s e s .  I n  t h a t  c a s e  we 
h a v e  t h e  s o - c a l l e d  b i p h a s e  zone  which  c o n s i s t s  in  t h e  i n t e r t w i n i n g  o f  d e n d r i t i c  c r y s t a l s  With 
t h e  m e l t  [ 2 ] .  The e f f e c t  o f  l i b e r a t i o n  o f  t h e  l a t e n t  h e a t  o f  c r y s t a l l i z a t i o n  can  be t a k e n  
i n t o  a c c o u n t  by i n t r o d u c i n g  i n t o  Eq. ( i )  t h e  e f f e c t i v e  s p e c i f i c  h e a t  i n s t e a d  o f  C i :  

c f= 

Qo (T) for TI< Tml~ 

C(Tso 1 ) - - L  d~ for TsoF<TI<Tliq, dT 
C 1 for " TI> Tliq. 

The subscripts 1 and so indicate the liquid or solid state of the alloy. 

The volume ratio of solid phase in unit volume of the biphase zone q is determined from 
the binary Fe-C diagram by the "lever rule:" 

-- C o 
q ---- q (T). 

q -C o 
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To generalize the solution and for convenience of the computation process we introduce 

the dimensionless temperature U i = (T i - T0)/T 0 and the dimensionless coordinate y = x/d. 
Then T i = UiT 0 + T O , x = yd. When we differentiate these expressions, we obtain 

OT~ = To au~ , OTt = aUi --,T O . __O = - - O  1 
o~ at ox av d ax av 

S u b s t i t u t i n g  t h e s e  exp re s s ions  in to  Eqs. ( 1 ) - ( 6 )  we ob t a in  a new system in d imens ion les s  form: 

for i----1 O ~ y ~  d~ 

.O ~ = ay d o ~ y ~ l ;  
d~Ci (Ui) p~ ( u 3  . 

for i=2  d 

au1 
- ;h ( u o  - -  

d y  

--~I (U1) au~ 
av 

U, (v; O) = 
U~o. eo~ yE[o; --7-d~ ], 

U~.o for y E [ + ;  1]; 

OU~ = 0  for !y=O; 
o.~ 

_ _  d (U 1 -  U~) ~ T~.nm _ %2 (U2) OU~a!t 

. . . .  Znm "+ - - ~  + ~ re 
6nm ~g 

;do for y =  
d 

.r 
= [ dU~ { % +  e%T0 a (U~+2)[ I+[(U~+ 1) z] } 

[ ,f(u~-u~) { q~f~+ ~*,~oT~ (U~+U~ +2) I(U~+ 1)2+ (Vf= + 1)~1} 

(8) 

(9) 

(i0) 

do . (11)  for 9 =  ---d---' 

- -  ~ (U~) _OU2 = dU~ {%+ e%r~ (U~+2) [1+ (U~+ 1)Zl} for V = b_~. (12) 
Oy d 

The set of expressions (7)-(12) determines the stated problem whose solution was carried out 
on a digital computer SM-1600. 

The calculation network for the ingot mold and the ingot was formed in the following 
way. First the segments [0; d0/d] and [d0/d; I] were divided into n I and n2, respectively, 
equal parts each of which on its segment determined the step h I or h 2. Then h I = d0/dnx; 
h 2 = (d - d0)/dn 2, and altogether the number of parts is N = n I + n 2. The nodes of the net- 
work on the segment [0; i] have the coordinates Xc+ l = x k + hk, where 

ht~--=/hi for k=O, n 1 -  1, 

t h2 for k=n l ,  N- -1 .  

We examine the temperature field on the network at fixed instants t = ~s 

To improve the approximation of the boundary conditions containing a derivative, we in- 
troduce additionally into the examination a fictitious network with coordinate nodes that 
overlap by half a step each of the calculation domains. 

We write the finite difference analog of Eqs. (7)-(12) on the nodes of the network, us- 
ing a four-point implicit schema [5]: 

rd+~ r# ( Utk+l__ ,#+l ) dZCt Oz uh -- uk 2 ~ Utk+] __.Uta+ 1 t 
= ~'z, h+ - @  kt "~- 1--- c ,~_ l .  

i,h i,g x hh--h~- x h e 2 hk-1 , '  

where 
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where 

l 
- -  ~1 ,k 1 

2 

~'h+ "-V- 

k = 1, N - - l ;  k=/=na; 

h h = I  hi for k :  1, nl--1,  

[ h2 for k == n l + l ,  N- - l ;  

= f  UI,o for k = 1, n 1, 
U~ 

U~, o for k = n~ + 1, N; 

U-i---- Uo; 

1 r -- tJn'v'i -=d ~r -- '-'h-1 Ua _{..CZrc 
- - -  h x 2 0 g  ./ 

Ul+, ,,,+, ( U  ,rz+t _ ,,z+, ) k+i-- ~ ,  _ Xnm d vk+l- t -u~,  
h~ 6nm m-" 2 

Unto--- .... for 6g=/=O, 
(U#+l-~U*~)~lmjg(Uk-l-~U*')(tJr-~ 2 . 

6nm -+" " 

Unm---- 2 

for k = n l .  

for k = rl I i r l / + l _ _ i ' f l + i  ffl+l ~ HI+I f ~l t in1 t Jn l - - I  t-/nt--I T ~n~ ~G~ ~..1_ -- | = d " [  C I 
l,n~- -'5-- h i 2 

(l+Iul-{-] )[ ].lff+llT!+l 2]} 
' ~ 8 ~ 1 7 6 1 7 6  On' "2u2 n ' - - I  "~-2 ]-~- I ~n~ ~ t ' ' n ~ - I  l) ,  r 

-~--g*o'0r~ l.+l /.fl+l + ~furrr'+'''~V-~ ~,--,-~-,~n, . - 6 1  (U~+rxq-l) z 
2 2 

for k = N 

1 ( 
1 - - d  czc+ 

)~2,~. 2 h2 2 

The s y s t e m  o f  t h e  l a s t  e q u a t i o n s  w i t h  r e s p e c t  t o  t h e  t e m p e r a t u r e s  in  t h e  nodes  of  t h e  
ne twork  i s  s o l v e d  by t h e  method o f  ma tch ing  [5 ] :  

Yh= 
Dk-- Akyk-~ . 

Pk+ A&h_~ 
for 

U~= yh+ ~hUh+~; 

t3h= 
B~ + A~t~_~ 

k = O  yk=O, 

l 

' I d2C[~ z Xi'k- --U;_ B t ,= - -  - 9i,a @ 
Ah == h ~ _  1 T 

I 
i,~+-- V- 

; k = 1, N --1; 

Ply= 1; 

1 l l X 

l l l dzCi,~ pi,hUh 

T 

The matching coefficients for calculating the temperatures Ur , Ur are found from the cor- 
responding boundary conditions: 
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Fig. 2. Comparison of the ex- 
perimental and theoretical tem- 
perature curves in a plate ingot 
during solidification and cool- 
ing in a cast-iron ingot mold; 
points 1-5 are the places where 
thermocouples are set; solid 
curves: experiment [6], dashed 
curves: calculation on an SM-600 
computer. T, K; ~, min. 

W--X 

~u01 == Y ~ , - l - -  Z ~ , - I - - Y - - Z  ' 

y~_~ (Z - -  Y) + U~,+~ (W -- X) + 20hm(X - -  Z) 

~V~, -= Y ~ n , - l - -  Z ~ n , - 1 - -  Y --- Z " 

2XUnm. W --  X 
V%,= W + X '  ~%'= W + X "  

The temperature of the ingot mold on the boundary with the environment (U N) at the sub- 
sequent time step is found from the expression 

U ~ '  = ?~_~ (F --  E)/[E (~_~--1) - -  F (~N-~ q- 1)1. 

Figure 2 presents the results of the calculation of the change of temperatures at dif- 
ferent points of the mold section whose wall thickness is equal to 0.29 m, and at the center 
of the plate ingot, 0.72 m thick, of rimmed steel. For the sake of comparison the experi- 
mental curves of the change of temperature at these same points [6] are given. At the ini- 
tial period the experimental and theoretical curves do not coincide (especially at the cen- 
ter of the ingot and on the inner surface of the ingot mold). This is due to the great in- 
ertia of the heat-sensitive elements that are used for measuring the temperatures at the 
mentioned points. When the indications of the central thermocouple are out of the inertial 
period, the curves practically coincide. The calculated time of solidification and cooling 
of the ingot is i0 min longer than the measured time; this amounts to less than 5%. This 
circumstance confirms the correctness of the approach to the mathematical modeling of thermal 
processes in the solidification and cooling of plate ingots chosen by the present authors. 

Figure 3 presents the results of a series of calculations of the joint heat engineering 
process of solidification-cooling-heating of a large plate ingot of steel St3, 0.74 m thick. 
It follows from the presented theoretical thermograms that when ingots are placed in the fur- 
nace before they have completely solidified, it is expedient to heat them practically with- 

1 
out holding (~nm), and the rate of the temperature rise at the instant when the heating pro- 
cess ends may attain 200~ or more in dependence on the amount of liquid phase. It was 
also shown that a change of the boundary conditions on the surface of the ingot (in this case 
cooling in the ingot mold and heating in the furnace) has practically no effect on the rate 
of crystallization of the ingot (casting). On the basis of experience in production and 
numerical experiments it was established that in each actual case, when ingots (castings) 
are left to settle, such an amount of liquid phase should be aimed at where their heating 
time is minimal. However, when the volume of the liquid core is fairly large, e.g., in 
blooms, the overall heating time may become longer because of the longer holding time con- 
nected with the reduced crystallization rate. The amount of liquid phase in the shaping of 
ingots (castings) is checked according to the surface temperature on the basis of numerical 
experiments and production data in each actual case with a view to the marque of steel and 

�9 2 the geometric dimensions. When fully crystallized ingots are heated, the heating tlme (~ 
3 . 

and ~nm ) is determzned by the true heat content of the ingot. In that case it is impossible 
to avoid the process of holding the metal, and the holding time may be considerably longer 
than the process of raising the furnace temperature until it reaches the control temperature. 
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Fig. 3. Thermograms of the joint heat engineering process: 

mcool = 3 h; T 2coo = 4 h; ~coo3 = 5 h) cooling time in the ingot 
mold; ~')cooling in air after "stripping"; r~m = 1 h 5 min) 

heating with liquid core; Tnm= 3 h 20 min; z'~ = 5 h 40 min) 
heating of completely solidified ingots (castings). ~, h. 

Thus, on the basis of our investigations the following conclusions may be reached. A 
single approach was worked out for the problem of studying the thermal state of large ingots 
(castings) in the joint technological process of solidification-cooling heating. The inter- 
relation between the regimes of heating and cooling is established by proceeding from the 
amount of liquid phase and the heat content of hot-charged ingots. Increased volume of the 
liquid core need not always lead to reduced heating time of ingots (castings); this is also 
confirmed by the results of numerical experiments concerning the conditions of shaping large 
plate ingots. 

NOTATION 

C, p, X) heat capacity, density, and thermal conductivity of the material, respectively; 
2 2 . �9 . 

arc = Sino0(Tl + Tnm)(T l +Tnm) , radlant component of the heat-transfer coefflclent from the 
ingot to the nonmetallic layer on the inner surface of the ingot mold; Xg and 6g, thermal 
conductivity of the gap and its magnitude, respectively; Xnm and ~nm, thermal conductivity 
of the nonmetallic layer and its magnitude, respectively; gin, reduced degree of blackness 
in the system ingot-nonmetallic layer; g", reduced degree of blackness of the surface of the 
ingot when heated in the furnace; o0, radiation factor of a blackbody; c , co vective compo- 
nent of the heat-transfer coefficient on the surface of the ingot mold; ~, ~ur, convective 
component of the heat-transfer coefficient on the surface of the ingot during its cooling in 
air and during heating in the furnace, respectively; ~ = $(T), thickness of the solidifying 
skin in the ingot; L, specific heat of crystallization; Tsol, Tliq, solidus and liquidus of 
the alloy, respectively; C~ and Cso, concentrations of the component of the alloy depending 
on the local temperature; T o , ambient temperature; U~, temperature of the ingot at the node 

2,n~+--~-- 
nl; U~2, temperature of the ingot mold at the node nl; X-- Xnmd l,n~---~- ;W= - - ;  Z 

2 ~ n m '  Y = hi h ~ 

= @ + ~ C  ; F =  ; E =  ; = 8aoT 

2. 
3. 

4. 

5. 
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PROPAGATION OF HARMONIC THERMOELASTIC WAVES IN MEDIA 

WITH THERMAL MEMORY 

A. G. Shashkov and S. Yu. Yanovskii UDC 539.3 

We present an analysis of the frequency dependence of phase velocities and damp- 
ing coefficients of harmonic thermoelastic waves in media with thermal memory. 

One of the urgent problems in heat-conduction theory is the investigation of heat-trans- 
fer processes taking thermal memory of the material into account [i]. By thermal memory here 
we mean the influence of the previous history of the thermal state of a body on its current 
state. Of special interest are the thermoelastic waves in such materials, which have propa- 
gation rates and damping coefficients different from the analogous relationships in the 
classical theory of thermoelasticity. Interest here is also stimulated by experiments on 
the propagation of thermal impulses at low temperatures [2] and in connection with high in- 
tensity thermal effects [3], where deviations from Hooke's Law are observed and where heat 
propagates at a finite rate in the form of waves of second sound. 

A study of planar harmonic thermoelastic waves in the framework of a classical model 
was made by Chadwick [4]. Engel'brekht studied propagation modes of thermoelastic waves 
within a model of generalized thermomechanics [5] and within the Green-Lowe model [6]. 

We consider a one-dimensional mathematical model of linearized intercouple thermoelas- 
ticity for isotropic media, taking thermal memory into account [7]: 

co~ (z, t) + ~  (0) ~ (z, t) + I~' (s) ~ (z, t -  ~ ds = ~ (0) 8 ~ (z, 0 + .[~' (s) 8' (z, t - -  s) ~ +• (z, t), 

(1) 
(2~3+ • u" (z, t) - -  p~ (z, t) = ~ 8 '  (z, t) + .[ ~ (s) 8' (z, t - -  s) ds, 

0 

where  a p r i m e  i n d i c a t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e  z ;  d i f f e r e n t i a t i o n  
w i t h  r e s p e c t  t o  t h e  t i m e  i s  i n d i c a t e d  by an o v e r d o t .  

We s e e k  a s o l u t i o n  o f  s y s t e m  (1)  in  t h e  fo rm o f  p l a n a r  waves :  

u = u0 exp [i (~z - -  ~t)], 

8 = 8o exp [i (~z - -  ~t)]. (2 )  

Substituting relations (2) into Eqs. (i), we obtain the following characteristic equation: 

(d~ ~ -  ~ )  { c o ~ +  ~ {~ (0) + ~ (~)] - ~ [~(0) + ~ (~)]} + ~ •  ~ (~)] = 0, (3 )  

where  f F ( ~ )  d e n o t e s  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  r e l a x a t i o n  f u n c t i o n :  

fr(e)= [[(s)exp(i~s)~; / - ~ { = ' ( s ) ,  ~'(s), ~(s)}. 
0 

We w r i t e  t h e  c h a r a c t e r i s t i c  e q u a t i o n  (3 )  i n  d i m e n s i o n l e s s  fo rm:  
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